1

Building a System for Scoring Creditworthiness

A Belarusian commercial bank asked Altoros to create a software system for scoring creditworthiness of the bank’s potential customers.

Finance
Data Analytics

The customer

The customer is one of commercial banks operating in Belarus. The banks main activity is providing small loans (up to $100,000) to small- and medium-size businesses as well as consumer loans to natural persons (up to $10,000).

The need

The main task was to develop methods and algorithms that could be used to classify borrowers according to their creditworthiness. We were to create a software system for scoring creditworthiness of the banks potential customers.

The solution

For our research we developed two creditworthiness scoring software systems:

  • CS JurPers is a system that classifies legal entities based on their balance sheet ratios.
  • CS NatPers is a system for scoring creditworthiness of natural persons based on the data in their personal profiles.

“Credit Scoring of Juridical Persons” (CS JurPers) is a system designed to classify potential borrowers from the bank (legal entities) according to the level of their creditworthiness. It implements the main mathematical algorithms designed for scoring creditworthiness of legal entities (the mechanism of linear discriminant analysis of Gaussian random vectors and the algorithm based on the logit model of binary selection). The system also employs the expert methodology developed by the Ministry of Finance of the Republic of Belarus to evaluate creditworthiness of borrowers.

To classify new borrowers, the user can employ the following:

  • the expert methodology of the Ministry of Finance of the Republic of Belarus
  • the algorithms based on linear discriminant analysis (the Fisher model)
  • logit models of binary selection with pre-evaluated ratios

The outcome

CS JurPers is currently used by the above mentioned Belarusian commercial bank to evaluate creditworthiness of borrowers. The implementation of the system reduced the time required to make decisions from 3-5 working days to 1 hour. Thanks to this system, the bank was able put new credit products on the market, minimize credit default risks, and, of course, increase the turnovers and returns on their loans.

You May Also Like

Automation of In-field Job Planning and Performance Optimization
Java
JavaScript
PostgreSQL
Information technology
Marketing
Call Recording, Analytics, and Workforce Optimization Solution
.NET
jQuery
C#
JavaScript
MS SQL
Information technology
Highly Scalable System for DNA Analysis
Hadoop
Java
Information technology
Healthcare
Sport
A Highly Secure Smart Home System Wins a Kickstarter Funding
Ruby
Ruby on Rails
JavaScript
Angular
PostgreSQL
MySQL
Information technology
The Image Recognition System
Java
MongoDB
NoSQL
e-Commerce
Integrated logistics solutions to the offshore industry
Android
LikeFolio: Best Practices of Cloud and Ruby Development for Application Optimization
NoSQL
MySQL
Ruby
Ruby on Rails
Marketing
Social media
Telecommunications
Finance
Data-Driven Analytics
Software for Selecting and Mixing Paint
.NET
MS SQL
C#
WP
Information technology
Retail
Software Suite for Mobile Technicians and Field Service Management
.NET
MS SQL
iOS
Android
Logistics and transportation
The System for Emergency Control Centers
.NET
C#
MS SQL
Healthcare
Sport
Logistics and transportation
The Cloud-based Document Exchange System
Java
jQuery
NoSQL
Information technology
e-Commerce
The Marketing Information Messaging System
.NET
C#
MS SQL
iOS
Marketing, Social media
Telecommunications
The NuoDB Migrator for Moving SQL Data to a NoSQL Database
Java
NuoDB
MySQL
PostgreSQL
Information technology
Manufacturing
Toyota Automates Its System for Holding Tenders
.NET
C#
Manufacturing
Warehouse Workload Monitoring Application
.NET
C#
MS SQL
WP
Logistics and transportation
Web-Based Personal Styling
Ruby
Ruby on Rails
JavaScript
jQuery
MySQL
Social media
e-Commerce
Web-Based System for Retailers
Ruby
Ruby on Rails
MySQL
MongoDB
Retail
e-Commerce
A Blockchain-Based Platform for Automating Bond Issuing Worth $10M
Bash
JavaScript
Blockchain
Finance

Contact us

Jan-Terje Nordlien

Daglig leder

jan-terje@altoros.no+47 21 92 93 00

Altoros Norge AS
Org.nr.: 894 684 992
Tordenskiolds gate 2,
0160 Oslo